The Plant Cell 21: 3803-3822 (2009)

Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana  [W][OA]

Ada Linkies, Kerstin Müller, Karl Morris, Veronika Turecková, Meike Wenk, Cassandra S. C. Cadman, Françoise Corbineau, Miroslav Strnad, James R. Lynn, William E. Finch-Savage, Gerhard Leubner-Metzger
University of Freiburg, Faculty of Biology, Institute for Biology II, Botany / Plant Physiology, D-79104 Freiburg, Germany, Web: 'The Seed Biology Place' (A.L., Ke.M., M.W., G.L.-M.)
Warwick Horticulture Research International (HRI), Warwick University, Wellesbourne, Warwick CV35 9EF, United Kingdom (Ka.M., C.S.C.C., J.R.L., W.E.F.-S.)
Palacky University and Institute of Experimental Botany Academy of Sciences of the Czech Republic, Laboratory of Growth Regulators, CZ-78371 Olomouc, Czech Republic (V.T., M.S.)
Université Pierre et Marie Curie-Paris 6, Germination et Dormance des Semences, UR5, Site d'Ivry, F-75005 Paris, France (F.C.)

Received July 23, 2009; Returned for revision October 12, 2009; Accepted November 17, 2009; Published December 18, 2009

Fig. 3 Linkies et al. 2009

Figure 3. The results of Principle Component Analysis (PCA) applied to CON and ABA microarray data of Lepidium sativum FR1.

(A) PCA was applied to the expression of all informative genes on the CON microarrays (22025 genes; see Supplemental Data Set 1 online) in various tissues and at various times after the start of imbibition, which is before and near the end of endosperm weakening, respectively (see Figure 1A), to look for global patterns of similarities and differences between the samples. PC1 and 2 accounted for 46 and 26% of the variance in gene expression, respectively.

(B) The results of PCA for the ABA microarrays (19794 genes; see Supplemental Data Set 2 online) in various tissues and at various times, as indicated. Samples at 8, 18, and 30 h were taken before the start of endosperm weakening, and the sample at 96 h was taken near the end of endosperm weakening and before radicle emergence (see Figure 1A). PC1 and 2 accounted for 42 and 20% of the variance in gene expression, respectively.

Synopsis: Tissue weakening of the endosperm is required to allow radicle protrusion during seed germination. Cross-species work including tissue-specific transcriptome analysis and biomechanical measurement of endosperm weakening provided a new mechanistic model that explains how ethylene promotes seed germination and counteracts the inhibition of endosperm cap weakening by abscisic acid.
Article in PDF format (1.8 MB)
Supplemental  data file (1.8 MB)
Abstract of Plant Cell 2009 
Fig. 1     
Fig. 6
Fig. S1
Fig. 2     
Fig. 7
Fig. S2
Fig. 3     
Fig. 8
Fig. S3
Fig. 4     
Fig. 9
Fig. S4
Fig. 5     
Fig. 10
Fig. S5
Hyperlink to
Datasets 1 to 9
          © American Society of Plant Biologists

The Seed Biology Place
Copyright © Gerhard Leubner 2000

Webdesign Gerhard Leubner 2000
Best viewed with browser version 4 and 800x600 pixel
This page was last updated on 30 January, 2010